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1 INTRODUCTION

It is a generally held view by economists that car dnvmg is sub-optimally priced in urban
areas. Irrespective of whether politicians are aware of the sub-optimal pricing, one may
interpret that they understand the second-best rule for pricing of public transport, based on
the fact that urban public transport in most industrialised countries is partly financed by its
users and partly by taxes.

Short-comings of second-best pricing, besides non-optimal levels of congestion, air
pollution etc., are that the public transport service worsens and excess burden becomes
larger than what would be the case with first-best pricing. Since motorists are generally
relatively insensitive to public transport fares, the only way to reduce congestion, improve
the environment and increase the standard of public transport seems to be road user
charges.

Section 2 of this paper includes a somewhat shortened version of paper 4 in Jansson (1991).
Section 3 includes a computer simulation of public transport prices and service frequencies

as a response to a move from non-optimal to optimal car travel pricing in the Stockholm
region.

2 MODEL ANALYSIS

2.1. Introduction

In the absence of road pricing a "second-best policy" where the public transport fare is set
below its marginal cost has often been discussed (see e. g. Glaister [1974]). An issue that
does not seem to have been analysed in the literature is whether bus passengers are better off
with or without road pricing. If this were known, it could have an influence on the transport
policy. In this paper we examine the implications of superimposing road-pricing not only
on an adopted second-best policy, but also on two adopted alternative policies. The
implications are discussed in terms of price for public transport as well as service frequency.
One policy is the second-best policy hinted at above. Another policy is a "bus optimum
policy", which assumes that a welfare maximising authority is dealing with bus service only,
but where the operator and its passengers are negatively affected by car traffic. A third
policy discussed is a "rule of thumb policy", which is widely used in practice, both by
publicly and privately run bus operators. This is a policy not based on optimisation, but
where the operator has to cover a certain percentage of costs (> or < 100%) and keep a
fixed load factor. With the second-best policy and the "bus optimum policy" it is found that
introduction of road pricing would increase both optimal price and optimal service
frequency, but with the "bus optimum policy" frequency would be increased relatively more
and price relatively less. On the other hand, with the "rule of thumb policy", which we
believe is the most common policy, public transport passengers would definitely be better
off with than without road pricing, since optimal price would be lower and optimal
frequency higher.



The paper follows the tradition in which price and frequency are optimised simultaneously
(c.f.Mohring [1972], Turvey and Mohring [1975], J. O. Jansson [1979],[1984] and Panzar
[1979]). The model presented in paper 1 is here extended in order to deal simultaneously
with bus and car pricing as well as bus service frequency.

The institutional framework and basic assumptions are presented in section 2.2. In section
2.3 maximisation of a welfare function provides the basic optimality conditions for both
the first-best and the two optimisation policies. In section 2.4 the implications of road
pricing for each of three alternative policies are analysed. Section 2.5 states the conclusions.

2.2 Institutional framework and basic assumptions

A Transport Authority is in charge of public transport prices and service frequencies. The
authority, or a public body working with it, may also be in charge of car travel pricing.

There is a group of people, all of whom have the option to use either bus or car on a road
from the outskirts of a city to the Central Business District. The reason for dealing with bus
specifically is that buses, as cars, cause environmental and congestion costs. Public transport
modes other than bus may be analysed analogously, bearing in mind that certain
considerations, specifically competition for road space between bus and car, would not
appear for other public transport modes than bus. Main results are valid, however, for all
urban public transport modes.

We use indices to identify modes of transport, thus letting 1 denote private transport and 3
denote bus transport. Mode specific prices, p1 and p3, are indicated by subscript, while all

other variables and parameters related to mode are indicated by superscript. Throughout
arguments of functions are delimited by [], while polynoms are delimited by ().

Optimality is achieved by maximisation of welfare, defined as consumers' plus producer's
surplus minus environmental costs, where the latter are e.g. air pollution, noise and external
accident costs. The analysis refers to one period, e.g., the morning peak, but can be repeated
for any period, assuming interdependencies between periods are negligible. The remainder
of this section defines transport costs and passengers' preferences, demand and costs.

Transport costs

The bus route is a y kms round trip. The distance travelled by the passengers we consider is
also denoted v, bearing in mind that it is assumed in fact to constitute a fixed part of y. The

round-trip time of the service is bq3+'yr3 [X1, F],where b is fixed boarding time per
passenger, X3 is the number of passengers in the time period, q3 (= X3/F) is the number of

bus passengers per departure, r! is the run time per kilometre that is independent of number
of passengers but dependent on congestion, i.e., on the hourly flow of cars and buses.
Frequency, F, is the number of departures per hour. The number of vehicles needed is

F(bq3+yr3 x1, F]). If C3[ ] denotes the cost per departure, the total operating costs are thus:
(1) FC3(g3, X1, F] = Fe(bg3+yr3[X1, F]) + c¥y) = F(Bq3+O[X1, F])

where c is the hourly capital, distance and labour cost per departure. Where there is no need

for detailed specification, the denotation to the right is used. B (Eac3/aq3s cb) is the
operator's cost for a marginal boarding passenger (assumed to be constant due to constant
boarding time, b) and O is operation-dependent time and distance cost.

Each car and bus is assumed to give rise to external environmental costs, El[Xl,F] =
yel[rl[Xl, F]] and E3[X1.,F] = ye3[r3[_X1, F]], respectively, where el is the environmental
cost per kilometre and 0E/0X! and 9EI/9F >0 (i=1,3).
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Passenger preferences, demand and costs

The aggregate consumers' surplus, of a homogenous group of travellers, choosing between
car and bus, is expressed as a function of the "generalised cost", G = p + ¢¢, where ¢ is the
vector of the travel time components and ¢ is the vector of monetary time values, assumed
to be the same for all individuals, i.e., the same for all at each point [p,¢], but where ¢ may
be a function of @. The vector ¢ is here comprised of riding time and "frequency delay"
for public transport and of riding time for car transport.

Riding time cost for bus passengers, T3, is the product of the riding time and the value of

riding time, ¢3, assumed to be dependent on occupancy rate, R = q3/c$, where © is the
number of seats, i.e., the more crowded the vehicle is, the more onerous riding becomes per
minute.

2) T3 =¢3[q3/c](bg3+yr3[X]1, F3])

Note that riding time cost varies positively with frequency due to worse congestion, via 3,
but negatively due to a lower occupancy rate, i.e., less crowding, via ¢3.

The motorists' riding time also depends on road congestion but the value of riding time, ¢! |
is assumed to be constant, since there is no correspondence to crowding in buses. The riding
time cost is then:

3)  Tl=¢lylxl, F

The interval between bus departures is 1/F. Ideal departure time, t, is in the interval 0<t<1/F.
Frequency delay, 1/F - t, is defined as the time interval between the actual departure time and
the passenger's ideal departure time. The cost of frequency delay for passengers with the

ideal departure time t is TY[F,t] = ¢*[1/F - t](1/F - t), where the value of frequency delay,
¢7, may be assumed to vary with the delay.

Since frequency delay cost is part of generalised cost and has a specific value for each ideal

departure time, t, demand may also depend on t, so that x3[t], is demand at time t in the
interval O<t<1/F. The three concepts of demand for public transport are thus related in the
following manner:

1/F
4) X3 =Fq3 = Flx3[t]dt
0

Evidently 9X3/0F>0, and we assume throughout that 0q3/9F <0, i.e., that frequency elasticity
is less than unity. Otherwise a doubling of frequency would for instance generate more than
the double number of passengers, which is unlikely. Demand for each mode is assumed to

be a function of generalised cost for both modes, i.e., Xi= fi[Gl,G3]. It is assumed that
variations in our policy variables, prices and frequency, affect the total number of journeys
to a negligible extent, so that such variations lead to travellers shifting mode, while total

demand, X1+X3, 1s constant.

The definitions of riding time and frequency delay costs imply the following expressions
for generalised cost for the individual in each group:

(5a) Gl=p1+ T XI[p, F1,F
(5b)  G3=p3+T3[ ¢3[ p, Fl, XL, F] + TYFE,{]



where p is vector notation of the two prices and where generalised cost for public transport,
G3, refers to the ideal departure time t.

The reservation price in generalised cost terms for the individual with the maximum
reservation price is called GM3X The consumers' surplus for passengers having the ideal

departure time t is denoted si[Gi]. The total consumers' surplus, Si[GI], at actual Gl = pi+¢isi
is then:

Ggmax

(6a)  sl[Gl]=fxi[pidp
Gl

I/F I/F Gmax
(6b)  S3[G31=F [$3[G3[tN1dt =F[ J(x3[pldp)dt
0 0 g3

S

The relations between demand, generalised cost and surplus are: e

(7a)  aSlGl= —x1
1/F
(7b)  983/3G3 = —F[x3[G3]dt = —Fq3 = -X3
0

2.2 Optimisation of prices and frequencies

We will here describe the general conditions from which we achieve optima for three
policies: "first-best policy", "second-best policy" and "bus optimum policy". We maximise a
welfare function, w, comprised of the sum of consumers' and producer's surplus minus
environmental costs, with respect to the three policy variables, i.e., the two prices and the

frequency:
®)  wIZiSUGI{p,Fl] + Tjnl - TiEl] =

= S3[G3[p,F,1]] + p3X3 - FC3[q3,XL,F] - FE3[X 1 F] + -

e

+S1[G1[p,F]] + p1X! - XIEI[X1 F]

The first-order conditions with respect to the prices pj (i=1,3) are derived in the appendix
and are:

©  w =X (p1-X'T] -X°T; -FCo - X'E} - E! -FE:f) +

3 3.3 3 j
+X (p3-X T3 - FC3) EZjX‘} (pj - mj) =0

3 .3
where subscripts are used for partial derivatives, so that e.g. % = w] and il =T, and

ox!1
where mj (j=1,3) denote social marginal costs. By using the specifications of functions (1),

(2) and (3), marginal costs can be expressed in more detail as:
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(10b) m3= X'(

The costs caused by an additional motorist include, in addition to the effects on other cars,
negative external effects borne by the bus passengers, the public transport operator and the
environment. Marginal costs caused by an additional bus passenger are borne by other bus
passengers and the operator, but do not explicitly include external costs borne by motorists
and environment, since frequency is kept constant in the partial derivation with respect to
price. Note also that marginal cost and optimal price of a car trip are directly proportional
to distance travelled. For a bus trip, however, only the part of marginal cost that reflects
crowding is directly dependent on distance travelled.

By dencting the difference between price and marginal cost dj = pj - mj ( i=1,2),we can
write (9) in matrix form as:

X1 x3\( 41
(11) =0
1,3
X3 X3 )\ d3

where, if all policy variables are available, d; = p; -mj = 0 corresponds to first-best optimum.

Our assumption that total demand is constant implies that the first-order condition with
respect to frequency can be written as follows both for first-best and non-first-best situations
(see appendix):

3 3 1 1
(12) g% m3}§3 - F%Q 3%11;—+y Xl%]i-xl%ll;— -F%E— -E3=0

In first-best optimum, where p; = m; , optimal bus price is:

00 oE! oT!
(13) p3 = (C+X3T y+FT+FT+E3+X1T+X1?F_)X_3

We observe the following: (i) optimal price equals the direct marginal social costs per
passenger due to an additional departure; (ii) if frequency has a negligible influence on
speed, passengers' travel time and environment, then optimal price equals the only term left

on the right hand side, which is average operating cost CF/X3; (iii) the first-order condition
with respect to bus frequency reveals a fact which the first-order condition with respect to
bus price did not, i.e., that optimal price for bus passengers actually covers external costs
inflicted on motorists and the environment. The larger the external and operating costs are,
the lower optimal frequency is and the higher the occupancy rate is, and, consequently
(according to the first-order condition with respect to price), the higher optimal price is.

Obviously the first-best optimum implies that profit may in principle be positive or negative.
The term y >0 (discussed in detail in paper 1) represents the direct positive effects on
passengers in terms of a lower frequency delay, while all other terms on the right hand side
in (13) represent costs borne by the bus operator and the travellers, due to a marginal
frequency change.



2.4 Alternative policies

Outline of the analysis and definitions of alternative policies

We analyse the implications of superimposing road pricing on each of three alternative
policies:

a) "second-best policy",
b) "bus optimum policy",
¢) "rule of thumb policy".

The "second-best policy" assumes there is a welfare maximising authority in charge of both
public and private transport, subject to the (political) constraint that cars must not be priced.
The "bus optimum policy" assumes there is a separate public transport authority, dealing
only with the welfare of bus passengers, although bus passengers and operator are affected
by cars. The "rule of thumb policy" conditions are not derived from an optimisation process
but are characterised by the facts that fares revenues are equal to a fixed proportion of cost
and that frequency is set so as to keep occupancy rate fixed. This policy is widely applied
both by publicly and privately owned bus companies. In countries like Holland, France and
Sweden, local political authorities typically determine fares financing to be e.g. 50% (typical
Swedish figure) of costs. In Great Britain, where most local and regional transport has been
privatised since 1988, the operators can be assumed to set the maximum profit margin
which keeps competitors out of the market. In public companies, the occupancy rate is
typically determined by what is considered to be "decent" crowding in various periods. In
Stockholm, for instance, the rule for local buses in the peak morning hour is that the ratio of
number of passengers to number of seats is 1.5, while in the underground the

corresponding figure is 2.0. Private operators can be assumed to set the frequency and
occupancy rate that keeps competitors out of the market.

We here employ comparative statics, where car travel price is regarded as an exogenous
parameter. By differentiating simultaneously the price and the frequency condition with
respect to the policy variables p3 and F and the parameter p, we achieve in principal the

following equation system in matrix form (where kij are partial derivatives):

ki k dp3 kq~d
11 k12 13dpg
(14) -

ko1 koo )\ dF -kp3dp

Application of Cramer's rule and division by dp; yields the following static derivatives,
which will be discussed for each alternative policy in the text below:

dps _kaskyp-kyzkgp  dF  kpjkyz-kypkos

b

dp;  kyjkgp -kyokog dp;  kyikop -kygkog

We assume demand functions to be approximately linear, so that second-order derivatives
with respect to demand are approximated to zero. All costs dependent on demand
(environmental, congestion and crowding costs) are assumed to be convex in demand, based
on the well-known fact that run time, and subsequently exhaust gases, per kilometre are
convex in number of vehicles on the road.

We use super- and subscript for first and second-order dérivatives, so that for example:

1
ax! 1 a9t 1« 971 1 90p 9OF 3 1. _1
oF =XF oF =TF g1 =Ti1 5 357 =OF1: 3F =OFF: 37D =B



We assume that the direct (substitute) effects on bus and car demand of a marginal change
in road pricing are large enough, so that total own-price elasticity, dX1/dp1<O and total

cross-price elasticity, dX3/dp1>O, irrespective of the direction of indirect effects via marginal
changes in optimal bus price, dp3/dp{ and bus frequency, dF/dp (see expressions below,
where & denotes direct effects).

(? (-)3 (+)3 (+)3 ) (+) ) . )
= + + ; = + + —_—
SF ; S
dpy  8p3dp;  dp; dpy dp;  dp3dp; dp; dpj

Xll and X:f will refer throughout to the total effect on demand, i.e., Xmldpl and dX3/dp1,

so that effects on demand are only considered when we differentiate with respect to the car
price, p1-

"Second-best policy"

By combining (1) for cost and (9) for marginal cost, m3(X3/F) - Cin (12) can be written as

X3(X3/F)T§ - O[X1, F], which is the passengers' marginal cost minus the passenger volume

independent operator cost per passenger. Observing that dC/9X3 =B, the first-order
conditions for the "second-best policy" with respect to price and frequency (see (9) and
(12)) are thus:

w3 3 1 1.1 3.3 1.1 3
(152) 5oz =X3(p3 - X3T3 -B) +X3(p1 - X Ty - X Tj - FO1 - X Eq - FE}) =0

3
(15b) =X3§—Tg - O[XLF] - FOg +y -X3T13: -XITII: - % -E3-X1E%.~ =0
oF F

Our assumption that total car and bus demand is constant implies that the first-order
conditions in (15) are the same for first-best and second-best optimum, meaning that the
analysis of bus price and frequency variations that follows hold equally well for car price
variations from any original price, e.g., both no car pricing and optimal car pricing may be
regarded as the original situation from which we change car pricing.

The differentials of the first-order conditions with respect to p3, F and pj are:

-) ) -)
(162) Xg dp3+(—xg X3T§F +

1 3 1.1 3 3 1_1 3
+X3(- Ol -El- X TIF-X TIF-FOIF-X ElF'FElF) )dF+

+ (-X:;’ Xg(Tg +X3Tg3) +X% —X:l3 Xé T? -

- X] X3(T]+E;+T] [ X +T3  X4F0, +EL x 14 E; (F) )dp; =

E‘kl 1dp3 + kjodF+ ki3dp; =0



(16b)  Odps +

) )
X3x3 3 X3 3 3 3
+- =5~ T3 +X33-T3g -20g 2B - FOpg +yg - X3Tip -

1 3 1
- X1Tpp -FEpp -X1Egg )dF+

32x3.3 3 3

)
1 3.1 1 1.1 .33 _1°1 3
+X1(-01 -B] -Tg -Bp -X Eg| -X Tgy -X Tg;-FOp; -FEgy) dp =

= kp1dp3 + kpodF+ kp3dp; =0

Let us examine the signs of the six kjj. Optimum implies that kj1<0, kpy <0 and

k11k92 - k12kp1>0. The fact that costs are convex in vehicle flow implies that k12<0. In
k13 there is one negative term, -X? X; T? . Knowing that X? < IX% | and assuming that Ti
= T215 (cars affect the speed of buses and cars approximately equally) , we conclude that

k13 >0. Obviously kp1=0. In kp3 there is only one negative term, -X? T13:; . Compare this

term with X% Tllz which is positive. Since Xf < IXi | and TII:,- and TIS; are approximately

equal in size (a marginal bus affects the speed of buses and cars approximately equally), we
conclude that ko3 >0.

The comparative static derivatives are thus (assuming the second-order condition to be met):
) ) (0) )
dp3 _kaskjp-kigkyy dF  kpjky3-kykpy

dpy  kyikop-kyokpyp  dpp kyjkopg - kygkog
ONO RO N()) IO ON())

It follows that dF/dp; >0, while dp3/dp] seems to be able to take on both signs. dp3/dpp <0

can, however, be ruled out as a feasible solution, since this would mean that insufficient road
pricing is met by a bus price exceeding the first-best optimal and a bus frequency below the
first-best optimal, which is obviously absurd. The magnitudes of the various partial
derivatives must thus be such that dF/dp; >0 and dp3/dpj >0. Introduction of road pricing

in this situation would increase both bus frequency and bus price. On the other hand, if we
move from a first-best situation with optimal road pricing to a second-best situation without
it, suboptimal pricing of cars should be met by a decrease in bus price but also a decrease in
bus frequency. The intuitive reason why frequency should not be used in order to reduce
excessive car traffic is that increased frequency has a negative impact on congestion and the
environment, at the same time as increased frequency decreases the positive external effect.
Since the introduction of road-pricing would increase both bus frequency and bus price, we
are not able to tell whether bus passengers would be better or worse off.
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"Bus optimum policy"

The objective function now includes only costs and surplus related to the bus mode,
implying that the first-order conditions (10) become:

X3 x3)( 43
an | 5 . =0
X4 X4 )\ dy

This scheme has the optimal solution d3 =d4 =0, i.e., optimal bus prices equal their
respective marginal costs.

The first-order conditions are (observing that all costs affecting cars are missing):

w3 3
(182) 5oz =X3(p3 - X3T3 -B) =0

3
(18b) g%- =X3-)5F—T§ -ox1, f ‘+y-FE13::- —E3-FOF-X3T% =0

Differentiating conditions (18) with respect to p3, F and p; yields:

- ) ) )
3.3.3 3.3
(19a) Xg dp3 + (-Xg X3T§F )F + (-X; X3(T3 +X T33) )dpy =kj1dp3 + kyodF+
ky3dpy =0
(19b) Odpj3 +
) (=)
X3%x3 3 X3 3

3 3 3
=7 T3 +X35-T3g -20p -2Bg - FOgg +yR- X3TgR - FEpp )dF+
5 ) )
32%X3.3 3 1 3 3.3 3
+(X1( F T3 -TF) +y1 +Xl(-01 -El -X TFI -FOFl -FEFI) dpl =
=kp1dp3 + kpodF+ ko3dp; =0

The comparative static derivatives are thus (assuming the second-order condition to be met):

) ) 0 )
dp3 kpskjp-kjskgy  dF  kpjKy3-kyikos

dp;  kyikpp-kypkpp  dpp kypkpp -kyokpg
OROENONO) OICO O ()

Compared to the "second-best policy", the only important difference in pé.rtial derivatives is
that the effects on cars of a marginal change in frequency are missing in kp9. The

implication of this fact is that for the "bus optimum policy" it is likely that koo has a smaller

absolute value than for the second-best policy. Comparing these two policies then indicates
that the bus-optimum policy means a larger increase in frequency and a smaller increase in
price when road-pricing is introduced. The intuitive reason is that under the bus-optimum

policy an increase in frequency is assumed to cause no harm on car users and the
environment.



"Rule of thumb policy"

A common policy applied by politically controlled bus companies is that financial grants
are determined so as to cover a fixed percentage of costs (@ <1), or make a "decent" profit
(o 21). Private operators can be assumed to determine a reasonable profit level (® >1),
which corresponds to the "normal” profit they can make without losing ground to other
actual or potential operators. Both types of operators can also be assumed to determine a
"decent" occupancy rate for peak and off-peak periods, based either on convenience or on
competitive commercial criteria. The price and frequency conditions are then:

(202) p3X3-w®BX3 + FO[XL, F]) =0
(20b) F-BxX3=0

where @ is the cost coverage requirement and P is the inverse of the fixed load factor, i.e.,
B = 1/q = F/X3, for fixed F and X3.

Differentiating conditions (20) with respect to p3, F and p; yields:
| 3 3 3 (-1)

(21a) X" dp3 +(-00 - ®FOR)dF +(p3X7 - ®BX] -@FO1X; )dpj = k11dp3 + kpdF+
k3dp; =0

(21b) 0dpz + dF - BX% = kp1dp3 + kppdF+ kp3dp1 =0

In (21) k11>0, k12<0, k13>0 (since p?,X:I5 - (DBX% >0 according to (20a)), k9 1=0, kp>>0
and kp3<0. Then:

) ) (0) =
dp3  koskyp-kyzkgy  dF  kppky3-kygkys

= : = >0.
dpy  kqikoa-kygkpy  dpyp kyjkgy - kypkyg
0) (0)
Obviously dF/dp;>0, while the sign of dp3/dp; is less clear. Therefore we

substitute (20b) into (202) and divide by X3, to obtain:

(20a") - p3 - (B +BO[XL, X3 =0

Differentiating (20a") with respect to p3 and py yields:
R

(22)  X3dp3 + 0pX3(-01X] - BOEX] )dp; =0

which means that dp3/dp; = a)B(OIX% + BOFX:I)’ )-

Since Xf & lX% l, and OF is approximately twice the size of O (due to the fact that a bus is

bigger than a car) and B is the inverse of the number of seats in a bus, it follows immediately
that dp3/dp3<0, given that O and O are positive, i.e., given that there is congestion. Where

there is no congestion, dp3/dp1=0.

The effects of the "rule of thumb policy" when car pricing is introduced is thus found to
depend on the level of congestion. If congestion is negligible, bus price is unchanged while

10
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frequency is increased. Where there is congestion, frequency is still increased but bus price
is decreased. Introduction of road pricing would in either case benefit the bus passengers.
The intuitive explanation is that the excessive demand for car travel corresponds to low bus
travel demand, which in turn motivates a low frequency. Since only cost coverage, and no
consumer benefit, is taken into account, price is high in order to compensate for the loss of
passengers. We can also turn this result around and say that where cars are not priced and
where the “rule of thumb policy" is adopted, bus passengers are definitely losers; where
there is congestion, they are worse off both in terms of a higher price and a lower frequency
than they would be with car pricing.

2.5 Conclusions

We have discussed the implications in terms of price and frequency for bus passengers, with
and without road pricing, for three different transport policies. Earlier studies of road
pricing have focused on corrective second-best pricing in the absence of optimal road
pricing, and correctly so, but have dealt with neither the consequences of alternative policies
nor the consequences for bus passengers in terms of service frequency. The analysis in this
paper was made possible by use of a model including joint optimisation of price and
frequency of public transport and taking into account interrelations between modes in terms
of demand and costs, determined by congestion and negative environmental effects.

A first-best optimum was derived to serve as a point of reference. Optimal price covers
marginal social costs, including environmental costs, caused by an additional traveller.
Marginal environmental costs caused by additional car users arise directly from the
increased number of cars. Increases in marginal social costs caused by additional bus users
arise indirectly through an increased optimal service frequency, and hence increased
number of buses.

We first examined a "second-best policy"”, assuming a welfare maximising authority to be in
charge of both roads and public transport and to aim at optimal public transport pricing,
given that cars cannot be priced. For this policy, introduction of road pricing would increase
both bus frequency and bus price, meaning that we are not able to tell whether bus
passengers would be better or worse off. On the other hand, if we move from a first-best
situation with optimal road pricing to a second-best situation without it, suboptimal pricing
of cars should be met by a decrease in bus price but also a decrease in bus frequency.

The second policy discussed was the "bus optimum policy". This policy assumes that the
public transport authority optimises bus price and frequency and that the flow of cars
affects both the operator and the passengers, but that the welfare of motorists is disregarded.
Where this policy is adopted, we obtain in principle the same outcome as for the "second-
best policy". But, since the authority is not concerned with the fact that buses affect the
environment and congestion, the bus-optimum policy means a larger increase in frequency
and a smaller increase in price when road-pricing is introduced.

The third policy discussed was the "rule of thumb policy". This policy is not based on
optimisation, but is characterised by the fact that price is set so that fares revenues cover a
fixed percentage of costs (> or < 100%) and that frequency is set to keep a fixed load
factor. This policy is believed to be the most common irrespective of whether the buses are
publicly or privately operated. The implications of the rule of thumb policy were shown to
differ with respect to the level of road congestion. Where congestion is negligible,
introduction of road pricing (then motivated by environmental costs only) would not
change the bus price but would increase frequency. Where there is congestion, introduction
of road pricing would, in fact, benefit the bus passengers both through a lower price and a
higher frequency.

11



3 COMPUTER SIMULATIONS FOR STOCKHOLM

3.1 Introduction

We have used computer simulation techniques to describe the outcome if pricing principles
were moved towards first-best pricing, both for private and public transport.

The computer simulations and analysis of car travel pricing (using the Emme 2 system)
have been carried out by the consultancy firm Transek, and the computer simulations of
public transport (using the Vips system) by the Stockholm County owned public transport
company SL, both on behalf of the Swedish Institute for Transport and Communications
Analysis. The link between these two analyses and the principles for public transport prices
and frequencies have been the responsibility of the author of this paper.

The analysis comprises of the following steps: 1) Car assignment “software based”

calculation of time savings, revenues and loss of demand for private transport if a

differentiated zone-based road pricing scheme is introduced in Stockholm’s inner city. 2) ™
An estimation of appropriate fare increases on public transport, given 1). Since step 1) ’
provides the number of former car drivers who convert to public transport for each O-D

pair, and step 2) provides a change in public transport demand for each O-D pair, the public

transport system is in step 3) re-designed, in terms of frequencies, in order to meet the

overall increase in public transport demand. 4) The public transport assignment software

Vips is used for calculation of the consequences concerning public transport, in terms of

consumers” and producers” surplus, exhaust pollution and total social welfare.

The results of the project have been used by the Swedish Parliamentary Transport and
Communication Commission for their work on a new Swedish transport policy.

3.2 Assumptions and prerequisites for the Stockholm case study
Measures

The following combination of measures is assumed:
e road user charges in the Stockholm area

* increased public transport fares to and from the inner city of Stockholm "oy
e increased public transport frequency in proportion to the increased public transport L
demand.

The road user charges are meant to reflect the negative external effects on each link in the
Stockholm area, not only in the inner city. The negative external effects are calculated based
on the recommendations made by SIKA in collaboration with Vigverket (the Swedish
National Road Authority) and Banverket (the Swedish Rail Track Authority). These external
effects comprise of exhaust gases, climate gases, noise, congestion and accidents.

With respect to public transport service frequency we have not necessarily aimed to calculate
the optimal frequencies. Instead we have followed the principle of “rule-of thumb”, which
was discussed in section 2. The reason is that we have taken for granted the principle applied
by SL. The consequence is that we have changed frequency in proportion to the calculated
change in demand due to the road-user charges.

With respect to public transport fares we had the ambition, jointly with SL, to simulate a
pricing structure which is more related to the marginal costs than the present structure. The
proposed structure assumes a zonal based travel card instead of the present uniform area-
wide pricing.

It is assumed that revenues from road pricing and public transport fares are used for tax
decreases, which give rise to an excess burden gain.
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Values of time

The time values shown in table 1, below, are recommended by the Swedish Institute for
Transport and Communications Analysis, SIKA, for national infrastructure planning.
1 SEK is approximately 0,09 Pounds Sterling (GBP).

Car users Public transport users

Values Proportions  Values Proportions

SEK/h % SEK/h %
Lorries 270 8
Business 140 19 140 3
Home-work 35 35 35 47
Leisure, school 26 38 26 50
Mean 73 32

Table 1: Values of time

Road Pricing

Based on the marginal external costs the average peak price in the Stockholm area would be
SEK 1.40/veh.km., 80% of which is based on congestion costs, 15% on accident costs and

5% on environmental costs. The maximum price in the inner city during the morning peak
would be SEK 6.10/veh.km.

Public transport pricing

In accordance with the discussion in section 2 the following principles are used:

1. The price is related to the in-vehicle crowding and time spent on each link

2. The price increases with the boarding time, meaning that cash tickets are priced higher
than pre-purchased tickets which in turn are priced higher than travel cards.

For these purposes a zonal system is assumed to be appropriate, where the zones are smaller

closest to the centre and larger further from the centre. Such zones are already implemented

for cash and pre-purchased tickets but not for travel cards. The figure below illustrates
schematically the proposed travel card zoning system for travel cards.
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Figure 1. Schematic illustration of travel card zonal system, where price levels are marked
T1, T2 and T3.

According to Jansson (1991) the optimal deficit for public transport in central to inner areas in
Stockholm is around 50% of operating costs. Since the tax financed proportion today is around
60%, the price level should be increased by some 25%.

The proposed prices are as follows:.

Travel in 1 zone, T1:SEK 355/month (equal to the area-wide uniform price in 1996)
Travel in 2 zones, T2:SEK 425/month

Travel in 3+ zones, T3:SEK 495/month

These prices mean that the average price of a travel card is increased by SEK 1.90 per
journey which is calculated to give the extra revenue of SEK 330 million per year.
Demand and service frequency

Road pricing is calculated to increase public transport demand by 4%, which means that we
assume 4% increase in service frequency. This corresponds to an extra 18 630 vehicle
kilometres between 6 and 9 PM on a yearly basis, distributed as follows: '
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Commuter train Underground Other train Diesel bus Ethanol bus
5 480 5 990 1 310 7 170 250

Table 2: Increase of supply, 1000 vehicle kilometres

Speed in the inner city of Stockholm

The average speed in the inner city is calculated to increase by 20%. Since 20% of the
round trip time is stop time, the net increase is 13% and the number of buses is reduced by
13%.

External costs

Here we present the recommendations for external costs in terms of exhaust gases, climate
gases, noise, maintenance and accidents, as calculated by SIKA for bus and by SL for
commuter train and underground.

Bus Bus Commuter fJnderground
Ethanol  Diesel, train Tram
Euro 1

Production, distribution 4,50 1,25 1,25 0,71
Exhaust gases, except 0,80 0,80 0 0
CO,
Accidents 0,72 0,72 1,20 1,20
Noise 0,29 0,29 2,55 2,55
Maintenance 0,27 0,27 1,85 1,85
Sum 1,28 2,09 5,60 5,60
CO, cost (derived) 0 0,48 0 0
Total external costs 2,08 2,57 5,60 5,60
Tax, energy 0 0,79 0 0
Tax CO, 0 0,47 0 0
Track charges 1,85 1,85
Total tax excl. VAT 0 1,25 1,85 1,85
External costs - tax 2,08 1,34 3,75 3,75

Table 3: External costs and taxes per vehicle (train) kilometre
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3.3 Results
Social welfare

The figures below show toal benefits, costs and benefits minus costs, distributed by winners
and losers.

SEK, million
per year
Public transport
2 o 0 USErs.
150 -
SL/Stockholm Total
100 - county Welfare
50 4
0 o
-50
-100
State External effects
Figure 2: Distribution of welfare with respect to public transport changes
SEK, million
per year
Stockholm
6 0 0 O county
Total
4000 i
A Excess »
2000 Public burden ||
transport
users SL/Stockholm
county
0 4 m=m
B = |
Distribution Stat.
22000 traffic Business ©
travellers
Private car
users
-4000
Figure 3: Distribution of welfare with respect to road pricing and public transport price
and frequency changes
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Most notable is that the majority of the effects stem from road pricing. Of the total welfare
effect, approximately SEK 3 500 million, the effect of public transport pricing and
frequency change is only around SEK 70 million, which equals to only 2 per cent.

Public transport users would gain slightly, while motorists would lose substantially. The
main winners are the tax payers , via the authority that collects the road-user charges.

Note that the net benefit would be positive even if exhaust gases and accidents were not
valued at all. While in many cases measures to improve the environment cause social net
costs, the environment in this case can be improved not only without cost but also yielding a
net social gain.

Financial result

SL would gain from the increased public transport fares and the county or the city of
Stockholm would gain from the road user charges. The state would lose from loss of taxes.
See the table below

Finances
SEK, million/year

SL 60
Stockholm county 5 650
State -710
Net +4 430

Table 4: Financial outcome for SL, Stockholm county and the state

Distributional issues

It would be possible to compensate the car users by decreasing the yearly vehicle tax. It may
seem unfair, though, to give all the revenues to the car owners since the revenues would
amount to some SEK 10 000 per year while the annual tax today is below SEK 1 000.

A large amount of the revenues could be used for income tax reductions. If all of the
revenues, amounting to around SEK 5 000 million per year, would go to tax reductions,
each income owner in the county would get a reduction of around SEK 6 000 per year.

3.4 Conclusions

The combination of road pricing and increased public transport fares and frequency would
greatly benefit society as a whole.

Most of the benefits stem from road pricing, the revenues of which could be used for
efficiency improving tax reductions.

The move from second-best to first-best pricing and increased service frequency of public
transport, which is economically justified by introduction of road pricing, is beneficial both
for the public transport users and the operator.

The measures imply that a "tax shift” would be socially beneficial, even if environment
effects are not valued at all.
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APPENDIX

For the objective function, w[X;Si[Gi[p,F]] + T;ni - S;E1], knowing that 9S1/9Gi = -XI (see
(7)), first-order conditions with respect to a price pj and frequency F can, letting m denote
social costs due to a marginal demand change, be calculated according to :

w _ o Swoxi . §SisGl sd SEI oX) o 9% _
opi z"J{éXJ.E _ZJ(§CJ §XJ +§Xj " §xJ’opi =ZJ(PJ'mJ)Tpi' =3
ow §w oXl Ow Xl  Sw

F = Zgxg oF +3F = 2@ -m)gE + 5F =0

where, in order to distinguish between various types of derivatives, § is used for the marginal
effects with respect to demand and generalised cost, & is used for the direct marginal effect
on welfare with respect to frequency, and d is used for partial derivatives. Once the first-
order condition with respect to demand or price is derived, we can directly insert Zj(pj - mj)

from this derivation when deriving with respect to frequency, so that we only have to
calculate the direct effect of frequency, dw/dF.

We here present the derivation of the first-order conditions for the objective function (8)
with respect to p3 and F. The corresponding derivation with respect to car price is

analogous.

First-order condition with respect to p3:

ow 9S309G3 sl oGl ox1 ox3

(A 3p3 =3G39p3 * 3G1 op3 T Plops *P3Tp3 *
oC3 9x3 ac3ax! oE3 axl oEl ax1 ox!
3. - - - , =
+FX2 - 5339p3 "3xT9p3 axlop3’) X 3x19p3 E op3 =0
where
oGl aTl axl
dp3 ~ oxl 9p3
9G3 T3 ax3 T3 ax!

9p3 = ! *3x39p3 " 3x1 9p3

Using (7) and writing derivatives by using super- and subscript, so that for example

oc . oxl _1 T3 9X3 3.3 .
3 = C3, 33 = X3 and X30p3 = T3 X3 , the first-order condition can be expressed

as:

ow 1 1.1 3.3 1.1 _1 3

3 3.3 j
+X3(p3 - X T3 - FC3) =3;X3(pj - mj) =0
where pj - mj =0 represents first-best.

Analogous derivations of first-order condition with respect to car price yield equations (11)
in section 2.3.

The first-order condition with respect to frequency, F, is as follows:
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dw _ 883 8sl e SE3 __8El

(A3)  FF=SF+3F - C -Fzg -E3- Fsp - Xl +
0x1 X3
+(p1-mp)—3F +(p3 - m3) ¥—0
where (see (6)):
8s1 _aslsgl _ _, 8Tl
3F =3G1 oF = X' TF
1/F 1/F
SS = Js3[G3[p3,Ft]ldt - F(1/F2)s3[G[p3,F,1/F]] +FI 3-a——d
0 o
and where
1/F 1/F 1/F
os3 9G3 0s3 9TT 9s3 993 -X3 X3 x3
[ f. I' -
g3 oF dt=Fyos g dt + 3(aR pr Al )+¢3(b ”’5—)) =
0 0
I/F

3 3
1523 %Iidwx—(x (%?—c—yﬁ(b—+ yr3) + ¢3 ) - X3¢3

We use y to denote the change in consumers' surplus due to a marginal change in
frequency, i.e.:

1/F 1/F

y = [s3[G3[p3,E.tl]dt - F(1/F2)s3[Gp3,F, 1/F]] + FI os> 3 T dt
0 o
We use:

813 &r3
LalRati s

to denote the road congestion cost borne by bus passengers caused by an additional bus. i

W

According to (4), (7) and (10) we have:

oC X3 30
For =BF +F

m3 =X (g"l—aﬁ(b =+ 1r3) +¢3%)+B

(A3) can then be rewritten as:
ow ox1 0X3
(A4)  gF =(1-mD3F + (3 -m3) 35 -

3 3 1 1 3
-E3.C- F%Q— %Fi_ X3§5'I;_ XI%E;_ I%T_ +§—m3+y—0
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Let us denote dj = p; - m;. Outside first-best optimum, where pj is no policy variable, (11)

yields that d3 = - (X; /Xg )d1. We then have:

ox1 ax3 X1 X1
X X 3 4F 3
413F + 439 =dXpC3-—3)

Xp X3

Our assumption that changes in bus price and frequency mainly cause people to switch
between the bus and car alternatives, while the effect on total travel demand for these modes

1 1

. . I o3 wpy o3 Xp X3
is negligible, means that XF zXF , X 3zX3 and that (—3- ——?) =0, so that

Xp X3

oXx1 oX3
le +d3?F— =0.

The first-order condition with respect to frequency is then as follows both for first-best and
non-first-best:

ow 3 30 _SE3 83 8Bl ;8T X3
(AS) 5—=-—E -C-F'SF--F-SF- -X3-8'F— —XI—F—X_SF_-I-?m3+y=O

The effects of a marginal increase in frequency are represented as follows: E3 and

F(SE3/8F) are direct environmental costs, X1(8E1/8F) are environmental costs via cars, C is
the operating cost per departure, F(80/JF) is the effect on operating cost through

congestion, XL(8TL/SF) is the cost borne by car users, (X3/F)m3 is the operator's and the
passengers' savings in riding time costs through higher speed and y is the reduction in

frequency delay cost. Note that §T3/8F (= ¢3y8r3/8F) represents the increase in riding-time
cost due to increased road congestion, while the reduction in crowding cost that follows

from a higher frequency is absorbed in (X3/F)m3.

In optimum pj = mj; i=1,3, implying that bus passengers pay a price equal to m3, which can
then be replaced by p3. We can then express the first-order condition with respect to

frequency in terms of optimal price (knowing that all derivatives with respect to frequency
represent direct effects we now use d instead of & for these derivatives):

00 _9E3 oEl o3 9Tl F
(A6) p3 =(C-y+Fgp +Fgp +E3+X 1o +X3— +X15) =3
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