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ABSTRACT

A modelling framework for optimal pricing and financing is presented. The framework is
suitable for urban bimodal contexts with central area car pricing schemes and subsidised public
transport services. The problem is formulated as system surplus maximisation. The paper
discusses how the formulation adopted can be derived from the original bilevel problem which
considers supply at the outer level and demand at the inner level. The theoretical underpinnings
of the utility maximisation framework used for the formulation of the demand problem are
presented. The formulation of the representative traveller’s utility maximisation problem, which
only produces aggregate demand in case of congested networks and that retrieves frequency,
destination, mode and route choices according to nested logit model, is provided. The cases of
user homogeneity and heterogeneity and of non-interacting and interacting modes are
considered. The paper presents the transformation needed to obtain the formulation of the
system surplus maximisation problem from that of the representative traveller’s utility
maximisation problem. The paper concludes showing how to derive practical formulations of
the problem from the theoretical solution.

1. INTRODUCTION

The rapid motorisation that began in the 1950s was followed in the 1960s by a series of studies
that theorised the need for an ever greater increase in the supply of infrastructures to meet the
growing demand for travel in private cars. According to this reasoning, the role of public
transport services was destined to become, over time, relatively modest if not marginal. By the
1970s Hillman et al.!”), Plowden and Schaeffer @ and Sclar®, to name a few, were contesting
the technical and economic validity of this approach, which was, they maintained, self-
fulfilling: the policies adopted were such as to make the predictions come true. Today no one
disputes (Goodwin'?), either the impossibility of increasing the supply of road infrastructures
that can satisfy the demand or the necessity of adopting provisions that encourage the use of
public transport to reduce rush-hour congestion.

In this paper long-term intervention policies, tending to identify the best endowment of road
infrastructures and transport services will not be addressed; instead, we will deal with short-
term intervention policies aimed at making the best use of the existing networks in a bimodal
context, private car and rapid transit, by introducing some scheme of pricing and financing so
as to reduce the economic disbenefits due to the discrepancies between the average private
costs and the social marginal costs. In fact, when traffic flow builds up and congestion occurs,
the Road Space (RS) becomes a scarce good used in competition and, as such, an economic
good whose use wants a price to be paid.



In order to identify the way to be followed to make the best use of the existent RS in congested

urban areas, some points are to be clarified. It must first of all be stated whether or not is RS a

common good, then what functions is the RS conceived to fulfil and finally who must pay for

RS provision and maintenance. With reference to actual situations it seems logical to assume

that road network and, consequently, RS is an integral part of any urban area; a component,

among many others, characterising the structure and the quality of the urban area itself. It

follows then that:

a) RS is a common good, whose best use is one of the Local Government’s competence;

b) all of the functions of RS, other then those connected with traffic demand, are paid for by
means of general taxation;

¢) the payment connected with the last use must be determined in the context of traffic
equilibrium optimisation problems, whose solution must then be based on some socio-
economic criterion, say, just to clear up the idea, welfare maximisation.

In modelling urban travel demand, the behavioural approach, or equivalently the trip consumer
approach, will be adopted where an individual traveller may be considered a consumer of rips
just as he is a consumer of other goods. In this way travel demand can be modelled within the
well established microeconomic theory and methods, where pricing and financing schemes, as
well as other issues relevant to urban transport policy may be addressed rigorously and where
it is possible to address in a totally consistent manner the integration of the supply and demand
sides of travel and to identify the resulting equilibrium.

Generally speaking, we can say that the supply side of the problem consists of some social
objective function to be maximized subject to, among other constraints, the users behaviour,
who aim at optimise their own objective functions, representing the demand side of the
problem. This means that determining optimal supply requires solving a constraint optimisation
problem in which some of the constraints take the form of another optimisation problem. In
fact, as it will be seen in the next section, the demand side of the problem, when, as in the
present case, there is congestion, can only be formulated as the solution of the Representative
Traveller’s Utility Maximisation Problem(R.T.’s UM.P.).

Let the vector Q, representing the traffic flow pattern, be split up into two components, Q; and
Q., to remember that the problem we will deal with refers to a bimodal context: private car and
transit, respectively. In a similar fashion let the vector Y, representing the resources consumed,
be split up into two components, Y; and Y,, to signify that the first ones, which are variables of
the socio-economic type, though relevant with respect to the supply side, are not included in the
demand side of the problem, where the ones variables affecting the traveller’s choices only are
included. The problem can then be formally represented as:

Maxf(Q;,Q,Y,,Y,) a)
s.t. (SSP)

g(QI’Q2§ Y, Yu) <I b)

MaxU(Q,,Qz;Yu) a)
s.t. ' (DSP)
h(QI’QZ;Yu) <B b)
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where SSP represents the Supply Side of the Problem and DSP the Demand Side of the
Problem, given, in congested cases, by the R.T.’s UM.P..

To date, such type of problems, known as bilevel problems, presents many theoretical as well
as computational difficulties and represents an active research area so that it is hopeful that
most of them will be overcome in the near future. For this reason, in the following we will
develop a theoretical framework relating to the demand side of the problem which allows us,
first, to formalise in the most general case the R.T.’s UM. P. which leads to the user
equilibrium, and, then, to find out the way to achieve a system equilibrium in a bimodal
context.

2. THE DEMAND SIDE OF THE PROBLEM

In order to formalize R.T.’s U.M. P., a brief review of the basic elements of consumer demand
theory in the context of utility maximisation problem is now helpful. In so doing we will refer
to Varian® where any detail can be found on the subject.

2.1 Direct and indirect utility function

In the context of utility-maximising behaviour, the consumer is assumed to be faced with
possible consumption bundles in his consumption set X, and to have preferences on the
consumption bundles which satisfy certain standard properties so as to allow to summarise his
behaviour by means of a utility function U(x) which often is a very convenient way to describe
consumer’s preferences.

Let b be the budget available to a consumer and let p be the vector of prices of goods. It is
assumed that preferences satisfy the hypothesis of local ronsatiation so that, for any given p
and b, the utility maximisation problem can be written as:

Max U(x)
x (¢Y)
s.t. px=>5 xeX

where there is a unique bundle that maximise utility.

Let U (p, b) = U*(x) be the solution of problem (1) which, in virtue of the above properties,

always exists. U(x) is the direct or unconditional utility function while U (p, b) is called the

indirect or conditional utility function. The first one reproduces the consumer’s preferences,
the second one the utility received after a given choice has actually been made. The function
that relates p and b to the demanded bundle is called the consumer’s demand function and is

denoted by x(p, b).



2.2 Aggregating across goods and across consumers

Let the consumption bundle be partitioned into two sub-bundles so that it takes the form
(T, Z) where T is the vector of “consumption” of different kinds of trips and Z the vector of
consumption of all other goods. Let the vector p be analogously partitioned into (c, q) where

c is the price vector of T and q the price vector of all other goods. Problem (1) can then
equivalently be written as

Max U(T,Z)

T.Z
s.t. 2
cT+qZ =5

In order to make it possible to apply the utility-maximising behaviour to travel demand
modelling it should be possible to partition the available income & into by and bz, the
expenditure on the Z-goods and on the T-goods, respectively, and to reduce the overall
maximisation problem to a sub-utility maximisation problem so as to determine the optimal
choice of the T-goods, that is to say the different kinds of travels.

To this end let the direct utility function be separable, i.e. the consumer’s preferences over the
T-goods are independent of the z-goods, which is an actually plausible assumption. The overall
utility from T and z can then be written (McFadden'®) as a function of the two sub-utilities

ur(T) and uy(Z) where U (uT (T),ug (Z)) is an increasing function of #; and ug.
Moreover, let 7= T(T) and Z = Z(Z) be some scalar quantity indices that give the average
“amount” of goods consumed, and let C = C(c) and O = Q(q) be some scalar price indices

that give the “average price”. Finally, let the direct utility function be homothetic so as to write
the expenditure functions as:

e(c, uT) =e(c)-uy

e(q,uz) = ¢(q)-uz

By assuming e(c)=C and e(q) =(Q it is possible to formulate the overall utility
maximisation problem at the aggregate level as:

€)

Max U(T,2)
s.t. 4)
CT+QZ=b

where the price and quantity indices behave like ordinary prices and quantities.

After determining the two total expenditures CT and QZ it is possible to formulate the partial
optimisation problem to determine the optimal choice of the T-goods as:

Reger’
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Max U(T,2)
s.t. 5)

where b, represent the expenses for all other goods, and whiere Z, b, and by are known
quantities. The above result, where all the formulas and variables refer to a single consumer,
completely solve, as theoretical framework, our problem of modelling travel demand in the
context of utility maximising behaviour on condition that there is no congestion traffic and
therefore no external costs imposed on other travellers.

When consumption generates external effects, as in fact it happens in congested networks
which we are to deal with, where any individual traveller’s behaviour is dependent on and
influenced by that of all other travellers, the only way to determine the aggregate demand is at
an aggregate level by formulating and solving the R.T.’s UM.P. This can be done if the
aggregate behaviour looks as though it were generated by a single representative consumer. It
is proved that this is the case on condition that the individual consumer’s indirect utility
functions take the so called Gorman form:

(771 (C, bl) = fn (C) + g(C) ) bn (6)

where the subscript 7 refers to the sth individual consumer.

As (6) shows, the Gorman form implies that the marginal utility of income, referring to any
indirect utility function, is independent of the level of income and constant across consumers.
This is a really strong hypothesis which must be taken some care of when modelling urban
travel demand, possibly by subdividing the set of interested individuals in an adequate number
of sub-sets internally homogeneous.

2.3 The Representative Traveller’s Utility Maximisation Problem

In modelling urban travel demand a four-level hierarchical logit model will be used whose
correspondent structure of systematic utilities are depicted in figure 1 where the origin zone i is
assumed given. The four-level decision making concemns: travel or not to travel, subscript £
destination, subscript j; mode, subscript m; route, subscript r.

i

travel or
not travel

Figure 1 Structure of systematic utilities for a four-level hierarchical choice



With reference to a given origin zone i let F;, P/, Poysj» Hryiym be individual traveller’s

probabilities of choosing: whether to travel or not, conditional to zone 7; the destination j,
conditional to 7 and #; the mode m, conditional to i, #, and j; the route 7, conditional to i, #, 7, and
m, in that order.

As known (see, for instance Oppenheimm) the random utility terms in any indirect utility
function are identically and independently Gumbel distributed, each one of the above
conditional probabilities, which represents a one-level choice, is given by a logit model, while
the joint probability that an individual located in origin zone i travels to destination j, on mode
m, and following on that mode route r, formally given by:

Pometi = L i * Pyt * oty * Ertism )]

is given by a four-level nested logit model as follows:

PGt i) BTV P Otist o) P 11

P. .= e . — . = = - =
gmrli BiUy AW i) ¥ eﬂz(U tit W i) D eﬂ3(Um/ig'+”/r/ijm) 5 eﬂ‘U rlitim
r

(®)
I+e
Jj m

where each term of the product on the right-hand side in formula (8) represents the
corresponding conditional probabilities in formula (7), and where

V,11m = Ejz In %eﬂﬁ"”’" (92)
Wonrtig = —é;ln EeﬂS‘ﬁm"ﬁ 7 15n) (9b)
W s = él“?eﬂz(ﬁﬂ" e ©9)
where le Xl y;,.y,, TEPTESENs in any (m-+n)-level hierarchical choice process, the best an

individual traveller chosen at random receives on the average (Anderson et al.®’)) from his
jointly repeated choices of xj,X,,...,X, conditional to yi, y,,...,¥,, having already been
chosen.

Formulas (8) and (9), which imply ;< f,< f3< 4, are a generalisation of the results
obtained in McFadden ' concerning a two-level hierarchical choice process.

2.3.1 Uncongested case

It is by definition:
I, =N;-Fy;; Vi; N; given (10a)
Ty =T1;- Py Vi, j (10b)



Limr = Tjm* Br1ijm> VL J,mT

which also imply:

T;'jmr = Tij 'Pr/iy'm = Tz_‘j ‘Pmr/izj =T 'ijr/ix
%?];jmr = ];'jm : Vi, j,m

2 T =Ty Vi, j

=Ty =13 vj

X T; = 2T; = T = total demand travel
i J

=N; - Pymrsis Vi, j,m7; N;given

(10d)

(11)
(12a)

(12b)
(12¢)

(12d)

When there is no congestion, the utility functions attached (see figure 1) to any given individual
choice are fixed (not influenced by other individual’s choices). The above involved
probabilities, whose expressions are synthesised in figure 2, can then be evaluated and the
aggregate traffic flows determined. In this case, solving the R.T.’s UM. P., which is an
alternative way to determine the aggregate demand, is not convenient.
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Figure 2. Scheme of joint and conditional probabilities

2.3.2 Congested case

The fundamental difference between the uncongested and the congested case is that the utility
functions, specifically those linked to destination and route choice, are now unknown, because
affected by the choices of travellers themselves, and are to be determined internally as part of
model’s solution. Consequently, the only way to determine the aggregate demand is at the



aggregate level, as solution of the R.T.’s UM. P., which is no more an alternative way as it
was in the uncongested case.

Formulating a R.T.’s U.M. P. requires aggregating both across goods and across consumers,
which in turn requires, as we have seen in section 2.2, the direct utility functions to be
separable and the indirect utility functions to be of the Gorman form. According to the first
hypothesis, which is absolutely plausible, we assume the problem to be like that in formulas
(5), while, to take into account the above recommendation linked with the assumption of the
second hypothesis, the vector T in formula (5), which in the present case of a combined four

level travel demand is of the kind T{{]}}{];J} (T} { e }} should be thought of as

being partitioned into a number of sub-vectors, each component representing a R.T. referring to
an internally homogeneous sub-sets of travellers. With reference to one R.T. the R.T.’s UM.
P. can be formally written as:

MaxU(T, Z) (13)
T .
s.t.
Z cymr];jmr + bZ B (14)
i,j,mr
Z ymr ym: Vi,j, m, (153.)
2T =Ty, Vi, j,; (15b)
m
3% =% vi, (150)
Ji

where the (15) represent the consisteny constraints.

The problem now is to find out the particular expression to be given the aggregate direct utility
function U (T, Z) in order to retrieve the combined travel-destination-mode-route demands

conforming to the individual utility maximisation approach. On this regard, it is helpful to

recall that, when modelling urban travel demand, the following assumptions are generally

made:

e The systematic utility an individual actually receives from making one trip form origin zone
i to destination zone ] on mode m and route r is formally given by:

Uymr/z - Ut/z + U Jjlit + Um/zg + Ur/tt]m > (162)

e each term on the right hand side of the (16a) is a linear function of an adequate number of
attributes characterising: the origin and the destination zone, the mode, the route, and,
ultimately, the individual travellers;

e in the first level utility function, U,,; in the present case, the individual budget, or income,
b; is always included, as an attribute characterising the individual travellers;

e the utility function U r1igm 1 generally specified as:

~

Ur/ iim = —(Cijmr +7- tymr) = —&ijmr
(17)
where ¢ represents the average travel time and g the average generalised cost. The parameter

o »?



7 , which represents the conversion coefficient between units of travel time and units of money,
is to be estimated by means of calibration.

Leaving unspecified the remaining utility terms because unnecessary at this stage, the (16a) can
formally be written as follows:

Ug’mr/: b + X + X + ‘X'ym - qmr - ymr = b + X + X T X gx}’mr (17b)
where 5 for Short, %ai x,- = Xi 5 %ayx,] U 5 zayqum = Xym

Given any individual indirect utility function such as the (17b), the corresponding aggregate
direct utility function of the representative traveller corresponding to aggregate demand
referring to a combined travel, mode, destination, and route choice, taking in mind that the .

terms are not fixed, with reference to independent modal networks, can be formally expressed
as follows:

vy
UTD]MR = BZ —sL X I t","(v)dv —— X 2';jmr In ijr + ZXymz;Jm +
ma ( ;B4 ijmr ym
1 1 ) I
—|—=———12T;,In +Z ( j IyInd; + (18)
(/ﬁ Bt im Tym B B
1 1
XX T -\~ | Z2TGInT + X T In Ty
i By /32 i i
where, for short,
Z I;jmré:;mr (19)
and where
I, if the link a is part of route » between 7 and j on mode m
G = : (20)
¥ 0, otherwise

The maximization of the (18) subject to the same constraints (14) and (15), is proved to be a
convex problem whose solution retrieves the aggregate demand conforming to nested logit
model (see, for the details Oppenheimm), 241-250).

2.3.2.1. Generalization to multiple user case
Let us consider the case where the set of all individual travellers is split up into a number N of

sub-sets, each internally homogeneous, each represented by a different R.T., and let U, gmr/ i

and Urppm, P =1,2,...,N, be, the systematic indirect utility conforming to (16b), and the
corresponding aggregate direct utility conforming to the (18), respectively, referring to the nth
subset.



Assuming that the aggregate direct utility function is given by:

N
Umpmr = ZUmir (21)

n=

can be with no difficulty proved that the procedures, above recalled, leading to the (18), can be
paralleled to the case of N different R.T.s, substituting for the symbol f () the symbol

N
Y. £"(-), in the (18), and the symbol f"(-); n=12,..., N, in the (14), (15), (17).

n=I

On this basis and taking into account the (18) we can say that, in summary, the aggregate

direct utility function referring to N different R.T.s consists of:

e an entropy term for each level of the traveller choice process and for each R.T.;

e an aggregate utility term for each individual utility term X, X;, X, ,and X, , and for
each R.T., where the aggregating process results from simple summation or from an
adequate integration depending on the utility term in question being fixed or affected by
other travellers choices;

e aterm By for each R.T. denoting the amount spent on nontravel item.

A part from computational and operating difficulties, the two cases, one or more than one
different R.T's, are equivalent and in the following we will refer to the first.

3. TRANSFORMING THE USER EQUILIBRIUM INTO A SYSTEM
EQUILIBRIUM

Solving the budgetary constraint for B, substituting in (19) after rearranging the route costs

in terms of link costs and deleting B, which, being a constant, does not affect any maximization
process, we get:

Ve 1 3
StoMmr = -T2 X I g,’,"(v)dv—— z ];'jmr In ];'jmr + injm];'jm +
ma () ,34 imr iym
I 1) 1 1
- =2, InT;, + 2 X T —(———)ZI} In7; + (22)
(ﬂs Beljw "I TV B By VY

1 1
+>:X,-z;.-(———)(zr,-1 T+ 3T InT)
i ﬁ] BZ i . ;0 0

1

which represents the aggregate surplus of the representative traveller under consideration.
The maximization of the (22) subject to the consistency constraints, represents the R.T.’s
Surplus Maximization Problem (R.T.’s S.M. P), corresponding to the R.T.’s UM. P., and
retrieves, obviously, the same above aggregate demands conforming to nested logit model.

On the other hand, the traveller surplus may be used as an indicator of social welfare since, at
a market level, transport consumer’s surplus reflects the net sum of gains and losses of all

10



producers and consumers (Jara-Diaz and Farah®). It follows that the differences between the
solution of the R.T.’s S.M. P. and the solution of the above general bilevel problem depend on
and are related to the so-called market failures. This also means that, to the same extent to
which we succeed in both evaluating and reducing the market failures effects, we can also
assume the R.T.’s S.M. P. to be a good approximation of the bilevel problem.

With specific reference to urban transport case, and recalling that we are dealing with short run

interventions, the main reasons of economic inefficiency are:

1. the external costs imposed on other transport users by individual mode choice decisions,
which are especially important in highly congested conditions;

2. the external costs associated with noise, pollution, and accidents;

3. the increasing economies of scale generally characterising the public transport networks
with a downwards sloping marginal cost curve, i.e., marginal costs lower than average
costs.

As regards equity considerations, which very often is one of the most important concern when
making decision about new investments, it is reasonable to assume that it does not play an
important role in this context. In fact, it is universally recognised that using transportation to
achieve income distribution objectives is not an effective tool: generally weak in the long run
interventions, it is certainly insignificant in short run interventions. It would be more effective
to use general taxation and social welfare policies to achieve distribution effects and leave the
transport market to function at the best.

3.1 Interacting modal link in a bimodal context

The (22) refers to independent modal networks. When dealing with interacting modal links, the
first term on the right hand side of formula (22) does not hold any more.

With reference to a bimodal context characterised by cars and buses sharing the same network,
let:

g;":g;"(vl,vz); m=1.2 (23)

be the generalized link cost functions.

It is well known, and easily verified that the (22) still holds on condition that a) the (23) are
such that the following condition is met:

5gi(v1>v2) _ ﬁgf(v,, vz)
dv,  dv, @4

and b) the first term on the right hand side of formula (22) is replaced by:

—;— >3 {:j: g£ (x, vz)dx + v(j: g2 (VI, X)dx} (25)

11



The condition (24) is not easily acceptable, because it implies that the effect of an additional
unit of modal demand on the other mode’s link cost are symmetric. In order to overcome this
difficulty, we modify the (23) as follows:

g.=g.(v +v.)+&(v)

(26)
g: = ga(vl + vz) + gf(vz)

where the functions g, (vl + vz) , certainly symmetric, g;(v,) and g7 (vz) are to be settled

on the basis of traffic theory when cars and buses share the same network (see, for instance,

Papolal'®).

All we need, in fact, is to determine expressions gi (v I vz) and gg (v T v2) satisfactory from
the traffic flow theory stand point, such that the following condition is met:

@“L =gM(vy,vs), m=12 @7)
vm

3.2 Theoretical System Equilibrium (TSE)

In order to remove the above inefficiencies, an integrated urban transport pricing and financing
policy is needed so as to achieve a more efficient equilibrium where the costs within the whole
transport market are internalised, by raising taxation to the private transport mode, which
exhibits an upwards sloping Marginal Cost (MC) curve, and subsidising the transit mode,
which exhibits a downwards sloping marginal cost curve. On the grounds of all the above
theoretical considerations, we are now in a position to formalize the R.T.’s S.M. P. in socially
optimal terms and, ultimately, to find out the way to achieve practically acceptable solutions.

The first step is quite immediate. Given the generalized average cost functions g;"(v) we can
determine the generalized marginal travel cost functions f"(v):

fam(vb Vz) = gf,"(V], Vz) + _é’gag+v2) y gZ‘(vJ, Vz); m=12 (28)

Substituting for the g;"(vl,vz) functions the f:'(vj,vz) in the original R.T.’s S.M.P. we

get a System Surplus Maximization Problem (S.S.M.P.), whose solution supplies us with a
System Equilibrium (SE), instead of the previous User Equilibrium (UE).

In principle, all we need to achieve such a result, is to price the private car mode and to
subsidise the transit mode according with the differences between marginal costs and average
costs at the link level. The intervention should not give place to deficit, provided that the
difference between the SE and the US consists, substantially, of a modal shift towards the
generally less expensive public transport mode.

12
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3.3 Practical system equilibrium

The procedure described in the previous sub-section is unworkable in practice. In fact, given
that a complete pricing and financing scheme at link level has been determined, it is patently
evident that a toll collection system actually implementing such a scheme is far away from
being available. It follows that the precision achieved in modelling and solving the problem is
destined to vanish in some measure when implementing the scheme.

To clear up this idea, let us refer to the case , assuming that a toll is levied on all private car
entering the inner area I, while, as far as the transit mode is concerned, it is assumed that the
frequency of service will be increased according to demand increase. The different kind of
typical trips on both modes to be taken into consideration are:

1. A &1, from outer area to inner area;

2. A< A, from outer area to outer area; _

3. Ao 1o A, from outer area to outer area trough the inner area.

Given that the toll is one and the same for every vehicle entering the cordon, the question arises
on how to achieve an equilibrium as close as possible to the SE resulting from the solution of
the R.T.’s S.M.P.. To this end, let us determine the total amount of the toll revenue R and the
weighted mean value of the toll P corresponding to the SE as:

P= % Ty (fur-gm)) T T 9)

i€A,jeLr ylr (fyjr g]]r i€A,jelr 5l

R= % Ty, P (30)
ieA,jelr

There is no doubt that, applying a toll as P to each vehicle entering the cordon, an equilibrium
flow will be reached surely different, perhaps notably different, from the above Theoretical
System Equilibrium (TSE).

Figure 3. Scheme of different kinds of typical trips when a central area C is surrounded by a
cordon toll in order to charge every vehicle entering the cordon

Let A(i,j,m,r) be the set of links a such that 5,-;-:,,,_ = and let A(I) be the set of all the links

lying inside the cordon toll. When a toll P is charged to each vehicle entering the cordon, the
generalized perceived cost to car mode will be, in general:

8ijlr =zgaé;]",1r +7ij1r'P (€29)
a

13



where:

{1 if Afi,jLr}nA{l} =2
_ (32)

Tor =10 if ali, jl,r}n Al =

Substituting for g, the (31) and solving the RT.’s S.M.P. formalized in terms of

disaggregate variables, we can evaluate the difference, in terms of Social Surplus (SS),
between the solution so found and the TSE. By repeatedly applying such a procedure for
different values for the toll P, we can get the PSE as the solution of the R.T.’s S.M.P
approximating at the best the TSE.

4. FURTHER RESEARCH

The paper has provided a modelling framework to address pricing and financing schemes from
both theoretical and practical standpoints. The work in progress relates to the development of
solution procedures of the problem formulated in terms of aggregate as well as disaggregate
variables.
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