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Abstract

Given a number of stops and line length, where should the stops be set for a
transit route? With mathematical derivations, this paper compare three transit
performance indicators under different transit stop spacing policies: ridership,
transit round trip travel time and passenger walking distance. A empirical study
is also presented to support the results of the theoretical derivations. Four policy
implications for transit stop spacing are suggested in the paper: (1) transit oper-
ators would prefer equal demand spacing rather than equal spacing policy if the
demand function is convex; (2) transit round trips travel time and operator cost
under equal spacing policy would be less than that of equal demand spacing pol-
icy; (3) total passenger walking distance under equal spacing and equal demand
spacing would be the same; and (4) if the travel demand is equally distributed

total walking distance under equal spacing (or equal demand spacing) can reach
minimum total walking distance.



1. INTRODUCTION

The purpose of this paper is to clarify some of the arguments about tran-
sit stop spacing policies. Given a number of stops and line length, four transit
spacing policies related to travel demand have been proposed in the literature:
(1) uniform equal spacing: stops are equally spaced along the transit line ir-
respective of travel demand (Holroyd, 1965; Lesley, 1976); (2) inverse demand
spacing: spacings of transit stops should be inversely related to the ratio of pas-
senger origins and destinations to volume of passengers traveling through an area
(Vuchic, 1981); (3) inverse square root defna.nd spacing: spacings of transit stops
in a linea; transit route should be inversely proportional to the square root of
the number of passenger boarding and alighting!. (Vaughan and Cousins, 1977;
Webster and Bly, 1979; Kush and Perl, 1988; Wirasinghe and Ghoneim, 1981);
and (4) equal demand spacing: the number of boarding and alighting passengers

is equal for each stop.

With mathematical derivation, we investigate some of the properties of spac-
ing policies and discuss general characteristics. Given the number of stops (de-
termined by the budget), three interesting questions related to transit spacing

policies are the followings:

1. Which spacing policy will attract more transit passengers and operator

revenue?

‘square root’ on a linear route should be replaced by ‘cube root’ in a two-dimensional city
(Vaughan, 1986).



2. Which spacing policy will achieve the minimum transit round trip travel

time and operating cost?

3. From viewpoint of passengers, which spacing policy will minimise total

access time to transit stops?

Sections 2 to 4 discuss these three issues respectively. A empirical study is pre-

sented in section 5. Finally, some policy implications are made in the last section.

2. TRANSIT TRAVEL DEMAND (OPERATOR REVENUE)

‘Transit travel demand (modal split) is a function of travel times and travel
costs on all transport modes. There are two reasons why we could assume that all
variables are constant, with the exception of walking time, in the travel demand

function for comparing travel demand under different spacing policies.

1. Auto travel time, auto travel cost and transit fare are independent of spacing

policy.

2. In designing bus stop locations, access time (walking time to bus stop) is
the only significant factor influencing transit travel time among the four

components of passenger travel time.

Thus the travel demand model could be simplified as a function of walking dis-

tance for comparing travel demand under different spacing policies.

D; = f(w) (1)



Figure 1: Transit Stops Along the Route

where f is travel demand function, and D; is travel demand (including auto and

transit) at stop ¢ and w is walking distance.

Consider a given transit line with line length L as shown in Figure 1, for which
{s5,1=1,2,...,n} are dista.ncés from the first stop to stops {S;,7 = 1,2,...,n} and
{4 = 1,2, .l..,n} are the hinterland boundaries of the stops, e.g. trips started
or finished between /;_; and I; will use stop S;. Under équal spacing policy, total

transit passenger demand is

S Dif(E) = Drf(3) @)

=1

where Dr is total travel demand. L is transit line length. On the other hand

b

total transit travel demand under equal demand policy is

i -’;—Tf{h —la)= -lln{fjf(h — i) (3)

=1 =1
According to Jensen’s Inequality? (see Mitrinovic, 1964) we obtain
f(&) < ion, f(li—lica) if f(w) is strictly convex.

= iy f(li—1io) if f(w) is linear. : (4)
> %Z};l flli = li21) if f(w) is strictly concave.

2For every convex function f(z),

G a) < =3 Has)

i=1 i=1



In other wdrds, equal demand spécing would attract more passengers if the f(w)
were strictly convex and less if it were concave. Transit operators would prefer
equal demand spacing if the f(w) were convex because it would attract more
passengers and hence increase revenue. On the other hand, equal spacing would

be preferred by transit operators if f(w) were concave.

3. TRANSIT ROUND TRIP TRAVEL TIME (OPERATING COST)

Three components of a transit travel time (from the first stop to the last) are
included: passenger boarding and alighting time, constant-speed travel time, and
the additional acceleration and deceleration time (lost time for stopping). Among
then:;, the transit additional acceleration and deceleration time is the only factor

affected by the different transit stop spacing policies.

Suppose the spacings are long enough that transit vehicles can accelerate to

maximum speed. The expected value of lost time from the first stop to the last

is

>R+ 2l - exp(-D)]. ®)

(see Ling and Taylor, 1988), where Dj; is the transit demand at i, V;, is the
maximum transit speed, r, and r, are transit acceleration and deceleration rate.

For equal demand spacing policy, total expected lost time from the first stop to

the last is

iy To s D new(E S -Dl (6)

=1

Zz"—’(% + %) Zn:[l — exp(

=1



On the other hand, for equal spacing policy,

Kzﬂi(% + %)[n - i exp(—Dw)]  (7)

=1

TS+ 2) 30— exp(— D)) =

i=1
Since the negative exponential function is convex, we could obtain (8) according

to Jensen’s Inequality.

nexp(> Y ~D) < - exp(~Di) ®)

i=1 i=1
This expression indicates that expected iost time under equal demand spacing
policy would greater than that under equal spacing policy. The shorter transit
round trip travel time allow for small fleet size. In other words, transit round
trips travel time as well as operating cost under equal demand spacing policy

would greater than that under equal spacing policy.

4. PASSENGER WALKING DISTANCE

Let us further specialise to the case where all transit passengers access transit
stops by walking, the average walking distance to the nearest transit stop is
approximately one-fourth of the distance between two stops. Therefore the total
walking distance >is given by:

1.m
W= E(l,- — liza)[g(l) — g(lizy)] - (9)
where W is the -tota.l walking distance and ¢ is the passenger demand as a con-

tinuous function of the distance from the first stop.

Under equal spacing policy,

W =23 L) - gty = 22 (10)

i=1 4n



where D is the total transit travel demand.

On th;a other hand, walking distance under equal demand policy is

Z(’ gD _ LD

n 4n (11)
1—1

The results of equations (10) and (11) show that total walking distance under

equal spacing and equal demand spacing would be equal.

Suppose the travel demand is equally distributed, i.e. g(:z:) = k, where k is

a constant. Then,

=ty (12)

t‘-l

Under equal spacing,

Z(l L)) (13)

t"l

According to Jensen’s Inequality we obtain

n[ Z(l —La)’ < Z(l = lia)? (14)

1.—1 =1

In other words, if the travel demand is equally distributed then equal spacing (as
well as equal demand spacing) can achieve minimum total walking distance. In
this case, passengers would prefer equal spacing policy (or equal demand spac-
ing policy). Vaughan and Cousins (1977) made the same conclusion by using a
continuous model which described the trip origins and destinations along the bus
route as a continuous function of distance from the first stop. The model was

solved numerically to obtain the optimum bus stop spacing.

For the general case of minimising total walking distance, we take derivatives

of equation (9) with respect to I,z = 1,2,...,n — 1, set them equal to zero, and



solve simultaneously,

T = 1[29(1) = 9(lo) = g(1a) + (2h — lo = Lo)g'(h)] = 0
%% = 112¢(12) — g(h) —g(ls) + (2 — s — I3)g (1)) =0 -

2 = L2g(lno1) = g(ln-2) = 9(In) + (2la-1 — lnmz — ln)g (ln-1)] = 0

This yields a set of n — 1 nonlinear equations. Since I, and Iy are given, the
equations contain n — 1 unknown variables. Thus we can find a feasible solution
{liyi = 1,2,...,n — 1} such that thg total walking distance is minimum. There
are several computer packages (e.g. IMSL) for solving such a system of nonlinear
equations. However, the set of equations above has a special structure. Each
equation contains only three unknown variables with the exception of the first
and the last equations which contain only two variables each. The generalised
algor-ithm of solving nonlinear equations is inefficient, or perhaps unable to find
the global optimum solution for a large number of equations. In this paper we

develop a special method to solve those equations. It is derived in following steps:

1. assume an initial value of /; to solve [; through the first equation;

2. since /; and [l; are determined, we could obtain /3 by solving the second

equation. Similarly, ly, [s, ..., I, could be obtained.

3. I, should be approximately equal to L. If the differences between I, and L

are too large, set new value of /; and repeat step 1 and 2 until satisfactory

convergence is reached.

Compared with the IMSL subroutine, this method has proved more efficient (less

computer CPU time) in various numerical examples, while the results are almost

identical.



5. EMPERICAL STUDY

We compare total walking distance and transit travel time under six spacing
policies from the empirical results. Those spacing policies are existing system,
minimum walking distance spacing, equal spacing, equal demand spacing, inverse

demand spacing, and inverse square root demand spacing.

The bus route chosen for this study is the Melbourne Bus Route 700 which
begins at Mordialloc, runs through Warrigal Road, and ends at Box Hill. It is 25.2
km long containing 97 bus stops. The average bus stop spacing is approximately
260 metres. A bus trip O-D survey was carried out in 1985 by Denis Johnson &
Associates Pty Ltd under contract to the MTA. A total of 1811 single journeys
were recorded for the route. 30.3 per cent of th¢ tfips occurred during the peak
hour (4pm to 5pm). The calculations in the following are based on the peak hour.
Denis Johnson & Associates (1987) discussed the details of the data collection

method and procedures.

The continuous cumulative function of boarding and alighting passengers,
g(z), is assumed to be represented by polynomial function of the distance from the
first stop. It can be calibrated from the observed bus trip O-D survey mentioned

above.

The hinterland boundaries of the transit stop locations, {/;,i = 1,2,...,n},

under different spacing policies are calculated as follow.

Equal Spacing
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L — i=1,2,..,n (16)

Equal Demand Spacing

9(L)

g(t) — g(lia) = L= i=1,2,.,n (17)

Since [y is given, we can obtain {l;,7 = 1,2,...,n} by solving the set of equations.

Inverse Demand Spacing

(b = lo)lg(h) = g(lo)] = (f2 — h)lg(%2) — g(h)]

glz —h)[g(l2) — g(l)] = (Is = 12)[g (%) —‘9(12)] (18)

-~

(oot = In2)g(lnct) = (tcz)] = (I = lat)lg(l) = 9(Uns)]

The method of solving minimum walking distance as mentioned as in section 4

can be applied to find the solutions for the set of equations above.

Inverse Square Root Demand Spacing

(1 — lo)yfg(l) — g(lo) = (12 — h)\/9(lz) — g(ln)
(la = l1)y/9(l2) = g(lh) = (Is = 12)/9(I3) — g(I) (19)

(ln-1 = In2)y/9(In-1) = g(In—2) = (In = ln-1)y/9(I) = g(ln1)

Similar method of minimum walking distance as mentioned as in section 4 can

" be applied to find the solutions, {l;,z =1,2,...,n}.

If people walk to the nearest bus stop, (Lesley, 1976; Wirasinghe and Ghoneim,

1981; Kikuchi, 1985) then bus stops should be located at the midpoint between
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bounda.ries“, ie. s; = %(l;_l +1;).® Since the transit stop locations are determined

we could calculate transit demand for each stop.

Dyi = D(k) — D(li-1) (20)

The results of bus stop locations and travel demand are shown in Table 1.
As a simplified demonstration, only the first 15 of 97 stop locations are listed.
By examining Table 1, it is found that the variations of distance between two
adjoining stops under inverse demand and inverse square root demand policies

lie between those of equal spacing and equal demand spacing policies.

It should be noted that the transit stops are not on the actual locations
specified in Table 1. There are many factors affecting the actual-location of
transit stops, such as intersection loca.tio.n, main sites of trip generation and
attraction, built form of the area, geometric design of the route and traffic signal
coordination. For more details, see Institute of Traffic Engineers (1967) and Terry
and Thomas (1971). For practical application, the results in Table 1 should be

adjusted by these factors.

Since the transit stop locations are determined we could calculate transit
demand for each stop. The total walking distance and bus travel time could be

also obtained (see Ling, 1987). The results are shown in Table 2. They suggest
four findings.

3Some papers (Vuchic and Newell, 1968; Black, 1978; Hurdle and Wirasinghe, 1980) assume
people minimise travel time rather than minimise walking distance, then S; is greater than but

nearly equal to %—(1 i—1 + Ii), i.e. people will have the same propensity to walk to the stop nearer
their destination.
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Table 1: The First 15 Bus Stop Locations and Travel Demand Under Different
-Spacing Policies

Existing Equal Equal Inverse | Inverse Square

System Spacing | Demand | Demand | Root Demand
A Spacing | Spacing Spacing
i) | D | & | Dy | & | Dy | i | Dy | & Dg;

11030 8 |026| 7 [ 056 (| 16 |0.38| 10 | 0.34 9
2(060| 9 |052| 8 [1.02| 16 [ 0.74| 11 | 0.67 10
3(090| 10 {0.78| 8 [1.43 | 16 |1.08 | 12 | 0.99 11
4120 11 [1.04| 9 |1.79| 16 |1.40| 12 | 1.29 12
5(1.65| 18 {1.30| 10 [2.12 | 16 | 1.71| 13 | 1.59 12
6210 21 |1.56| 11 | 2.44| 16 |2.00| 13 | 1.88 13
71230 10 |1.82 | 11 |[2.73| 16 [2.29| 14 |2.16| 13
8(12.50| 10 |2.08| 12 |3.02| 16 | 2.57| 14 |2.44 14
9(12.85|20 [2.34] 13 [3.29| 16 [2.84| 15 | 2.71 14
1013.20| 12 | 2.60| 13 | 3.55| 16 | 3.11| 15 | 2.98 15
11 |3.40| 18 {2.86| 14 |3.81| 16 |3.37| 15 | 3.24 15
121 3.60| 19 | 3.12| 15 | 4.06 | 16 | 3.63 | 15 | 3.51 15
13 13.90| 26 | 3.38| 15 | 4.30| 16 | 3.88| 16 | 3.77" 15
14 1 420 | 26 [ 3.64| 16 | 4.55 | 16 | 4.13 | 16 | 4.02 16
15[14.60 | 27 | 3.90| 16 | 4.79 | 16 | 4.38 | 16 | 4.28 16

* Boarding and alighting passengers.
** The hinterland boundaries of stop locations (unit: km).

Table 2: Comparison of Performances Under Different Spacing Policies

Total Walking | Transit Travel
Distance (Km) | Time (min.)
Existing System 119.5 61.0
Minimum Walking 95.7 61.9
Distance Spacing
Equal Spacing 98.0 61.6
Equal Demand Spacing 98.0 61.9
Inverse Demand 95.7 61.9
Spacing
Inverse Square Root 96.0 61.8
Demand Spacing
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-
1. The results support two theoretical derivations in sections 3 and 4: (1) same

total walking distances under equal spacing and equal demand spacing; and
(2) transit travel time under equal spacing policy would be less than that

of equal demand spacing policy.

2. The relocation of stop locations by the minimum walking distance spacing
method could reduce total walking distance in the existing system by up to

22 per cent.

3. Although the existing system has the minimum transit total travel time,
the difference between this travel time and those of the theoretical spacing
policies is not significant (0.9 mim in 61 min, i.e. 1.5 per cent). This
should be compared to the significant improvements in access time (about
22 per cent decrease in walking distance). Given Webster and Bly’s (1979)
study iﬁdica.ting that travellers value walking and waiting times as about
twice as important as riding time, the model results suggest that there is

considerable opportunity for service improvement.

4. The results of stop locations and transit performances under minimum walk-
ing distance spacing are almost the same as those of inverse demand spacing
policy. These policies offer the best levels of ‘access for passengers in this

example. ~

6. CONCLUSIONS

Although a rigorous assessment of transit stop spacing policy needs requires

detailed information about population distribution and travel demand functions,
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the followi;lg spacing policy implications can be drawn from the preceeding sec-
tions: |

1. Transit ridership and operator revenue under different spacing policies are

dependent on the travel demand function, which is related to walking dis-

tance. Transit 'opera.tors would prefer equal demand spacing rather than

equal spacing policy if the function is convex, otherwise equal spacing would

be applied by the transit operator. Given the passenger demand function

and bus stop spacing (or number of stops), a transit operator could deter-

mine bus stop spacing for more revenue.

2. Transit round trips travel time and operator cost under equal spacing policy
would be less than that of equal demand spacing policy. Transit operators
would prefer this policy as it offers lower operating costs. However, it does

not appear significant.

3. Suppose all transit passengers access transit stops by walking only, then
total passenger walking distance under equal spacing and equal demand
spacing would be equal. This assumption is valid for many suburban bus

routes.

4. If the trg.\}el demand is equally distributed, total walking distance under
equal spacing (or equal demand spacing) can reach minimum total walking
distance. Otherwise, the method presented in section 4 is proposed to
find transit stop locations for minimising total walking distance. Thus

passengers may prefer equal bus spacing policy within the CBD.
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